Smart cities are fast taking shape, driven by advanced, high-capacity mobile connectivity and networks of thousands of sensors. This will be a huge market. According to a recent report from MarketsandMarkets, The Internet of Things (IoT) in smart cities market is projected to grow from US$ 79.5 billion in 2018 to US$ 219.6 billion by 2023. It is a sector fuelled by innovative applications.
Yet as McKinsey said in its 2018 report: “’Smartness’ is not just about installing digital interfaces in traditional infrastructure or streamlining city operations. It is also about using technology and data purposefully to make better decisions and deliver a better quality of life.”
Aesthetics are critical, as is the ability to match products to their location. How things look is important in infrastructure and street furniture design. This includes everything reliant on sensor-technology, from dynamic, sensor-guided traffic and streetlights, to public transport monitors and displays, telecoms cabinets, fire and flood-detection.
Most cities have had multiple designers. One district or suburb does not want to look like every other, because each has its own character, of which its inhabitants are often protective.
Yet, with tens if not hundreds of designs of the same product necessary, the need for individual designs could quickly increase manufacturing costs. The solution is for electrical components that include sensors to be designed so they can be mass-produced and reused across multiple designs, while also reducing their housing costs. Miniaturisation is playing an important role here in helping save space, reduce costs and allow greater design flexibility.
The necessity to protect sensors from the elements, however, could be a limiting factor for manufacturers seeking production diversity. Sensors need protection from water ingress, otherwise the smart city will malfunction whenever there is heavy rain, burst pipes or flooding.
But in reducing sensor-housing costs, greater care must be taken to provide water-protection directly to the components as opposed to relying on the housing to act as a barrier. Mechanical solutions can be used to help the housing provide water-protection, but these will increase production costs.
Conventional methods of water-protection such as conformal coatings will not allow for miniaturisation necessary within sensor housing. The more densely packed the printed circuit board assemblies (PCBAs), the less space for physical seals. More PCBAs mean more connectors for communication. As these cannot be protected by traditional conformal coatings, they are often very vulnerable, or need mechanical seals built into the connectors themselves.
Nano-coatings by contrast, provide protection directly to the electronic components, making them more durable. These coatings are ultra-thin; can protect every part of the PCBA, and do not crack and delaminate with age as conformal coatings do.
Without nano-coatings, there is a danger that the importance of water protection will lead manufacturers to produce, highly-standardised, designs. The mission to make the street scenes of smart cities attractive and distinctive will fail. By contrast, manufacturers adopting advanced water protection technology such as nano-coatings will have the ability to produce more individualised street infrastructure designs that meet the aspirations of their customers – the public authorities and infrastructure companies.
We can already see that the Internet of Things and miniaturisation are making the smart city dream a reality. Yet for that dream to be realised, suppliers that support and simplify the implementation of design freedom are essential. It is key, therefore, that manufacturers are not hindered by outdated weather protection technology. Moving forwards, this will be essential if the vision of the smart city is to become a reality.